Isoform- and cell cycle–dependent substrate degradation by the Fbw7 ubiquitin ligase

نویسندگان

  • Jonathan E. Grim
  • Michael P. Gustafson
  • Roli K. Hirata
  • Amanda C. Hagar
  • Jherek Swanger
  • Markus Welcker
  • Harry C. Hwang
  • Johan Ericsson
  • David W. Russell
  • Bruce E. Clurman
چکیده

The SCF(FBW7) ubiquitin ligase degrades proteins involved in cell division, growth, and differentiation and is commonly mutated in cancers. The Fbw7 locus encodes three protein isoforms that occupy distinct subcellular localizations, suggesting that each has unique functions. We used gene targeting to create isoform-specific Fbw7-null mutations in human cells and found that the nucleoplasmic Fbw7alpha isoform accounts for almost all Fbw7 activity toward cyclin E, c-Myc, and sterol regulatory element binding protein 1. Cyclin E sensitivity to Fbw7 varies during the cell cycle, and this correlates with changes in cyclin E-cyclin-dependent kinase 2 (CDK2)-specific activity, cyclin E autophosphorylation, and CDK2 inhibitory phosphorylation. These data suggest that oscillations in cyclin E-CDK2-specific activity during the cell cycle regulate the timing of cyclin E degradation. Moreover, they highlight the utility of adeno-associated virus-mediated gene targeting in functional analyses of complex loci.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fbw7 isoform interaction contributes to cyclin E proteolysis.

The ubiquitin proteasome system plays important roles in regulating cell growth and proliferation. Many proteins that function in ubiquitin-mediated destruction have been linked to tumorigenesis. The putative tumor-suppressor protein Fbw7 (hAgo/hCdc4) is a specificity factor for the Skp1-Cul1-F-box protein ubiquitin ligase complex and targets a number of proto-oncogene products for ubiquitin-me...

متن کامل

The stability of Fbw7α in M-phase requires its phosphorylation by PKC

Fbw7 is a tumor suppressor often deleted or mutated in human cancers. It serves as the substrate-recruiting subunit of a SCF ubiquitin ligase that targets numerous critical proteins for degradation, including oncoproteins and master transcription factors. Cyclin E was the first identified substrate of the SCFFbw7 ubiquitin ligase. In human cancers bearing FBXW7-gene mutations, deregulation of c...

متن کامل

PI3K-dependent phosphorylation of Fbw7 modulates substrate degradation and activity.

The Fbw7 tumor suppressor gene encodes the substrate recognition subunit of the SCF ubiquitin ligase, which targets for degradation a range of oncogenic proteins in a phosphorylation-dependent manner. Substrate phosphorylation is thought to be the main mechanism that ensures timely destruction of Fbw7 substrates. We show here that PI3K dependent phosphorylation of Fbw7 stimulates its ability to...

متن کامل

The Fbw7 tumor suppressor targets KLF5 for ubiquitin-mediated degradation and suppresses breast cell proliferation.

Fbw7 is a tumor suppressor frequently inactivated in cancers. The KLF5 transcription factor promotes breast cell proliferation and tumorigenesis through upregulating FGF-BP. The KLF5 protein degrades rapidly through the ubiquitin proteasome pathway. Here, we show that the Skp1-CUL1-Fbw7 E3 ubiquitin ligase complex (SCF(Fbw7)) targets KLF5 for ubiquitin-mediated degradation in a GSK3beta-mediate...

متن کامل

Usp28 counteracts Fbw7 in intestinal homeostasis and cancer.

The stability of several oncoproteins, including c-Myc, is regulated by ubiquitin-dependent degradation mediated by the SCF(Fbw7) ubiquitin ligase. This activity is antagonized by the deubiquitinase Usp28, which is highly expressed in murine and human intestinal cancers. Usp28 was previously shown to interact with its substrates via a "piggyback" interaction with Fbw7, which suggested that Fbw7...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 181  شماره 

صفحات  -

تاریخ انتشار 2008